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ABSTRACT
The accuracy of computer vision systems that understand sentences
in images with text can be improved when semantic information
about the text is utilized. Nonetheless, the semantic coherence
within a region of text in natural or document images is typically
ignored by state-of-the-art systems, which identify isolated words
or interpret text word by word. However, when analyzed together,
seemingly isolated words may be easier to recognize. On this ba-
sis, we propose a novel “Semantic-based Sentence Recognition”
(SSR) deep learning model that reads text in images with the help
of understanding context. SSR consists of a Word Ordering and
Grouping Algorithm (WOGA) to find sentences in images and a
Sequence-to-Sequence Recognition Correction (SSRC) model to
extract semantic information in these sentences to improve their
recognition. We present experiments with three notably distinct
datasets, two of which we created ourselves. They respectively
contain scanned catalog images of interior designs and photographs
of protesters with hand-written signs. Our results show that SSR
statistically significantly outperforms baseline methods that use
state-of-the-art single-word-recognition techniques. By successfully
combining both computer vision and natural language processing
methodologies, we reveal the important opportunity that bi-modal
deep learning can provide in addressing a task which was previously
considered a single-modality computer vision task.

Index Terms— Text recognition, bi-modal, deep learning, new
labeled datasets

1. INTRODUCTION

Recognizing text in images is a research problem that has attracted
significant interest due to its importance in document image analy-
sis, image retrieval, scene understanding, and assistance to people
with visual impairments. Early work focused on images of printed
documents, which can be interpreted with traditional optical charac-
ter recognition techniques. More recent work shifted to recognizing
text in natural scene images with deep convolutional neural networks
(CNNs) [1, 2]. Text recognizer takes input from the text detector
in the form of a cropped image (i.e., bounding box or polygon) that
contains the word. In this paper, we proposes a text recognizer called
SSR for Semantic-based Sentence Recognition.

Although tremendous efforts have been devoted to improving
the performance of single-word recognition models, being able to
understand text in images automatically is still very challenging and
remains an open problem, even if an accurate bounding box of the
text is given. This also applies to the seemingly easy domain of doc-
ument images that include photographs of natural scenes with text
overlays. State-of-the-art methods, trained on existing datasets, treat
every occurrence of text in an image as an isolated word region that

needs to be interpreted individually. To create a research challenge
for recognizing text in images holistically, instead of word-by-word,
we provide two new labeled datasets called “Text-containing Protest
Image Dataset” (TPID), and “Interior Design Dataset” (IDD), which
we make publicly available [https://github.com/ivc-yz/SSR]. The la-
bels are polygons around each word region and the words themselves
(their character encoding). The datasets contain images of natural
scenes with multi-word phrases, sentences, or paragraphs, a prop-
erty that is rare in text image datasets. Existing datasets of outdoor
scenes typically only contain single-word text, e.g., on traffic signs,
street signs, or store name signs on building facades (only exception
we are aware of is the BDI dataset [3], which we also include in our
experiments).

The innovative insight that our paper offers is that images with
word groups contain semantic information that should not be ignored
but exploited. The ability of a model to read text should improve
when semantic information is available. In this paper, we show how
a deep learning model can be designed and trained to take advan-
tage of semantic information in order to recognize multi-word text
in images.

2. METHODOLOGY

2.1. Overview

Our Semantic-based Sentence Recognition (SSR) system, illustrated
in Figure 1, consists of four components that collectively recognize
text in images by understanding context.

The first two components of our SSR framework have been
shown to work well for single-word recognition. The first compo-
nent, the rectifier, processes each image region that contains a single
word by cropping it from the original image, relying on the input
coordinates of its bounding polygon (blue outlines in the input im-
age in Fig. 1). A perspective transformation algorithm then rectifies
these word regions, converting quadrilateral subimages into axis-
aligned subimages (see the word images surrounded by the dashed
red line in Fig. 1). For single-word recognition (SWR), we use
an existing text recognition model (any state-of-the-art single-word
recognition model can be applied here.

The third and fourth components of our SSR framework are our
innovation: WOGA uses the original polygon coordinates of each
rectified word region to produce phrases, sentences, or paragraphs
(see green dashed line in Fig. 1). A sequence-to-sequence deep net-
work, called SSRC, is then trained to solve the task of correcting the
words in these phrases, sentences, or paragraphs (dotted blue line in
Fig. 1).
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Fig. 1: Semantic-based Sentence Recognition (SSR) Architecture. In the example, the phrases on two protest signs are recognized by
ordering and grouping the words on each sign and correcting the initially misidentified words lie, if, and or. In our experiments, we compare
the accuracy of the SWR recognition results (orange) with the accuracy of the SSRC-produced SSR recognition results (blue).

Algorithm 1 Word Ordering and Grouping Algorithm
1: Input: Polygon coordinates and rectified subimages
2: // Ordering words:
3: Create directed graph G with costs on vertices & edges
4: Repeat
5: Set the flow number to 1.
6: Solve the min-cost flow problem which yields Si for a flow

path i. Trace the flow path i to produce the list of nodes Li.
7: Use the order of the nodes in Li to order the word regions that

correspond to the nodes in Li.
8: Combine the word regions into region Ri.
9: Delete the nodes on the list Li from G

10: Until G is empty
11: // Grouping regions of words:
12: Repeat
13: Randomly pick Ri and find all Rj’s that satisfy conditions (C1)

and (C2) and group them into the same phrase.
14: Remove the regions included in that phrase from further consid-

eration.
15: Until all regions are grouped
16: Output: Ordered words grouped in phrases

2.2. Word Ordering and Grouping Algorithm

WOGA arranges isolated words in an image into the correct logical
order and then groups them into phrases or sentences that belong
together. The pseudo code of WOGA is shown in Algorithm 1.

WOGA is inspired by a min-cost flow method [4], which has
been successfully applied to the text detection problem [5]. In our
case, isolated word regions correspond to vertices of a graph, and a
group of ordered word regions corresponds to a flow in that graph.
WOGA determines a cost between neighboring word regions and the
probability of choosing a word region to be the starting and ending
point of a sentence.

All word region candidates are first sorted according to their hor-
izontal coordinates based on the assumption that sentences usually
start from the left to the right. First, for each word region A and its
corresponding vertex vA, the directed edge from vA to vB , the vertex
corresponding to word regionB, is restricted by the three constraints
(the symbols used are defined in Figure 2(a), and TH , TO, and TA

are fixed thresholds):

Fig. 2: Definitions of symbols: (a) A and B are two word regions.
(b) C andD are two regions of ordered and combined word regions.

(1) The horizontal distance between A and B should satisfy the
condition (H(A,B)− wA/2− wB/2)/min(hA, hB) ≤ TH .

(2) The orientation similarity between A and B should satisfy
OVERLAP(A,B)/AREA(B)≥ TO and min(abs(dA1−dB1), abs(dA2−
dB2)) ≤ TA.

(3) The size difference of A and B should satisfy the condition
abs(hA − hB)/min(hA, hB).

To each directed edge, we assign the neighbor cost

Cn = γ D(A,B) + (1− γ) S(A,B), (1)

where γ is a weighing factor,D(A,B) = H(A,B)/ 1
2
(wA+wB) is

the Euclidean distance between the centers of word regionsA andB
as normalized by the mean of their window weights, and S(A,B) =
abs(hA − hB)/min(hA, hB) is the size difference of A and B.
Each vertex is defined as a source and a sink respectively, and the
other vertices are connected to both, where the edge connecting with
the source has an entry cost Cen, and the edge connecting with the
sink has an exit cost Cex. The entry cost is defined as

Cen(A) = max
i

(P (vi → vA)), (2)

where P represents the probability of any vertex vi that could reach
vA in the directed graph. If no vi reaches vA, the chance of a flow
starting at vA is large, which is consistent with a small entry cost at
vA. In this case, Cen(A) is set to 0. The exit cost Cex(A) can be
similarly defined except that vi ranges over all the vertices that could
be reached by vA. The total costCtotal of a flow in graphG can thus
be defined. Minimization of Ctotal can be efficiently solved by the
min-cost flow algorithm, yielding

Ctotal=
∑
i

Cen(i)fen,i+
∑
i,j

Cn(i, j)fi,j+
∑
i

Cex(i)fi,ex, (3)
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Table 1: Examples of inputs to our SSRC.

Original sequence SSRC input sequence
sitting room 〈GO〉 ‘ s i t t i n g ‘ r o o m ‘ 〈END〉
black or yellow-red 〈GO〉 ‘ b l a c k ‘ o r ‘ y e l l o w - r e d ‘ 〈END〉

where Cn(i, j) is a neighbor cost between vi and vj , Cen(i) and
Cex(i) are the respective entry and exit costs of vertex i, and vari-
ables fi,j , fen,i and fi,ex should be either 0 or 1 to enforce that each
vertex belongs to at most one flow and they are determined while
solving the min-cost flow problem. As a result, the min-cost flow
“prefers” a region of ordered word regions that have similar sizes and
are close to each other (smaller Cn) and a word region that has high
probability to be entry or exit (smaller Cen and Cex). After finding
all regions of ordered word regions, WOGA groups them into the
same region by checking if they satisfy the following conditions:

(C1) xlD < xrC and xlC < xrD .
(C2) abs(yC − yD)/min(hC , hD) < TY .

The symbols used in the conditions above are illustrated in Fig 2(b).
Extensive tests on the training datasets show that by setting TH , TO ,
TA and TY to 0.7, 0.5, 10, and 2, respectively, WOGA groups word
regions correctly. We set γ empirically to 0.7 so that the distance
cost will penalize more than the size difference cost. Sample results
of WOGA are shown in Fig. 3.

2.3. Sequence-to-Sequence Recognition Correction (SSRC)
Model

Inspired by a sequence-to-sequence-based approach [6] that solves
the NLP task of correcting spelling errors, we propose an attention-
based[7] sequence-to-sequence recognition correction (SSRC)
model, which can generates a “focus range” to indicate which
parts of the input sequence should be focused on. SSRC, whose
encoder and decoder are four-layer Bidirectional LSTM, can output
a variable-length information sequence from a variable-length input
sequence.

Before training our model, we need to transform the input se-
quences into a form that our model can understand. Some examples
are shown in Table 1. We treat each character as one word, then
split sentences into words using the grave accent (‘) and split each
word into characters using the space symbol. The beginning of the
sequence is marked as 〈GO〉, and the end of the sequence is marked
as 〈END〉.

In this framework, The input sequence x is transferred into a
context vector sequence c by a bidirectional LSTM-based encoder
for the purpose of making the model to more effective in combining
“front and back memory information.” The encoder process [8] can
be defined as

−→
ht = f(xt,

−−→
ht−1) and

←−
ht = f(xt,

←−−
ht−1), (4)

where {
−→
h1, ...,

−→
ht ,
←−
h1, ...,

←−
ht} ∈ R2t are the encoder hidden states

at time t, where t is the length of the input sequence of the SSRC
model.

The decoder is trained to predict the next character yt, given the
context vector sequence c and all the previously predicted characters
y1, y2, ..., yt−1. The probability for the output sequence y can be
defined as

P (y) =

T∏
t=1

P (yt|y1, ..., yt−1, c), (5)

where the conditional probability can be defined as

P (yt|y1, ..., yt−1,x) = g(yt−1, st, ct), (6)

with st = f(st−1, yt−1, ct) denoting the decoder hidden state at
time t.

In the attention-based sequence-to-sequence model [7, 9], the
mapping from each context vector ci to the encoder hidden state
{
−→
h1, ...,

−→
ht ,
←−
h1, ...,

←−
ht} is computed as

ci =

t∑
j=1

αij
←−
hj +

t∑
j=1

αij
−→
hj , (7)

where the weight αij for each hj can be computed by

αij =
exp(eij)∑Tx

k=1 exp(eik)
, (8)

and where eij = a(si−1, hj) scores the match between input char-
acter j and output character i.

During the training process, the training loss is computed on the
output of the decoder at the character level. At the each time step t,
the implemented loss function is the cross-entropy loss per time step
that is relevant to the previous time step [6], which is computed as

Loss(x, y) = −
T∑

t=1

log(P (yt|x, yt−1, yt−2, ..., y1)). (9)

3. EXPERIMENTAL METHODOLOGY

We evaluated the proposed SSR method on three datasets and com-
pared its performance to the performance of two baseline SWR
methods. State-of-the-art single-word recognition models use stan-
dard benchmark datasets such as [10, 11, 12, 13, 14, 15, 16, 17].
It is important to note that the text in these image datasets is typ-
ically a single word or several isolated words that are not relevant
to each other semantically. So the text in the image cannot express
unified semantic information. SSR is specifically designed to use
semantic information to improve the prediction of any text recogni-
tion baseline module. In order to test the benefit of using semantic
information in SSR, we work with newly created datasets, which we
describe in detail next.

3.1. Benchmark Datasets

As mentioned above, we here introduce the Interior Design Dataset
(IDD). It consists of 7,708 images of scanned product catalogues for
interior design and decoration. We selected 4,708 of them as train-
ing images, 1,500 as validation images, and the remaining 1,500 for
testing. The document images used for training contain more than
600,000 image regions with text and the number of image regions
with text used for testing are 251,074. The ground-truth labels are
the polygon coordinates of each image region that contains a word
and a textual representation (i.e., ASCII representation) of the word
itself.

We also created a subset of the UCLA Protest Image Dataset [18],
which is a collection of social media images that can be used to an-
alyze protest activities in street scenes. The original dataset consists
of 40,764 images, among which 11,659 images show a protest.
Among the protest images, we identified 816 images that contain
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Fig. 3: Visualization of WOGA on TPID images. The center of each
recognized word is shown as a red dot. A green arrow indicates the
semantic connection of the words within a text region.

Fig. 4: Sample results of SSR. In the IDD image in (a), the baseline
method omits two occurrences of the word ’a,’ but SSR correctly
predicts these two words based on the context of the sentence. In the
BDI images in (b), the baseline method incorrectly predicts ’WAR’
as ’WAS’ (probably due to the special font), but SSR makes a correct
prediction based on context of the phrase ’cold war’.

mostly hand-made signs and text that is hand written and select 656
of them as training images and 160 as testing images. We created
ground-truth polygons and textual representations of all the words
on every sign. We refer to the protest-sign image collection as the
Text-containing Protest Image Dataset (TPID). The total number
of words for testing is 2,293. We make IDD and TPID publicly
available for download [http://anonymous], and thus enable other
researchers to engage in semantic-based scene text recognition work.

The Born-Digital Images dataset (BDI) [3] is one standard
benchmark. BDI consists of 410 images for training and 141 im-
ages for testing. Since BDI was created as a text reading challenge,
the test set was published without ground truth. We therefore se-
lected the 410 BDI training images as a test set to evaluate our SSR
method.

4. EXPERIMENTAL RESULTS

The sequence-to-sequence model is widely used by start-of-the-art
SWR models. We used CTC-based[19] and Attention-based [20]
sequence-to-sequence-based SWR models as a component of SSR
and as baseline methods for performance comparison. Since the
state-of-the-art changes quickly in SWR [21, 22], the above two
models may not be the currently strongest text recognition models.
However, our emphasis here is to show that semantics-based pro-
cessing can improve text recognition accuracy.

The proposed CTC-based SSR system recognizes 226,067 out
of 251,074 (90%) words in IDD, 1,630 out of 2,293 (71%) words
in TPID, and 2,738 out of 3,558 (77%) words in BDI correctly (Ta-
ble 2(a)). Our results reveal that it outperforms the CTC-based SWR
for all datasets. In particular, on IDD, the CTC-based SSR beats

Table 2: Accuracy (%) and p-value (%) of the CTC and attention-
based versions of our SSR method and the corresponding SWR base-
line methods when tested on three datasets IDD, TPID, and BDI.

(a) accuracy IDD TPID BDI
CTC-based SWR 85.36 65.63 74.73
CTC-based SSR 90.04 71.09 76.95
Attention-based SWR 93.80 78.65 86.42
Attention-based SSR 96.34 89.39 88.11
(b) p-value IDD TPID BDI
CTC-based � 0.01 � 0.01 2.9
Attention-based � 0.01 � 0.01 3.3

the CTC-based SWR by 4.7 percent points and, on TPID, the CTC-
based SSR beats the CTC-based SWR by 5.5 percent points. On
BDI, the CTC-based SSR beats the CTC-based SWR by 2.2 percent
points.

The attention-based SSR beats the attention-based SWR by 2.5
percent points on IDD, 10.7 percent points on TPID, and 1.7 percent
points on BDI.

To determine whether the accuracy improvement between SWR
and SSR may be due chance, we performed a statistical significance
analysis. The p-value measures the confidence of obtaining such
an increase based on the sample size of the dataset. We use the N-1
Chi-Squared test [23, 24] to calculate the p-values in Table 2(b). The
first row shows the p-values for evaluating the improvement between
CTC-based SSR and SWR, and the second row the p-values for eval-
uating the improvement between Attention-based SSR and SWR, on
three benchmark datasets. A typical threshold for declaring statisti-
cal significance is a p-value of less than 0.05. Our result shows that
the impact of SSR is statistically significant on all datasets. For ex-
ample, we are 99.99 % (1 minus p-value) confident to declare that
the accuracy increase of the CTC-based SSR on IDD is statistical
significant. For BDI, we are 97.13% confident to declare a gain of
2.2 percent points.

The high accuracy rate of SSR (e.g., 96.3% for the attention-
based SSR) on the document images (IDD) is due to the fact that the
task is relatively easy. The words are all machine generated, hori-
zontally aligned, and the characters within a word have fixed fonts.
This reduces the difficulty for SWR and WOGA to be effective. In
contrast, the task of interpreting a word in a protest image is signif-
icantly more difficult. Due to the diversity of handwritten word lay-
outs in TPID, the tasks of word ordering and grouping are not easy.
At the same time, the variability of the aspect ratio and font type of
the handwritten word also makes it more challenging to order and
group the words on the protest signs in TPID.

5. CONCLUSIONS

In this work, we proposed a new deep learning model called SSR.
This model can efficiently understand the context between regions of
text or between words in images. SSR can extract sentences or para-
graphs from images instead of only isolated text regions or words
like state-of-the-art frameworks do. By ordering words and group-
ing them into phrases, sentences, or paragraphs, and interpreting on
semantic information, our model is able to effectively improve pre-
diction results compared to single-word recognition approaches. Our
experimental analysis shows that this improvement is statistically
significant. The combination of bi-modal information to obtain im-
proved prediction results is of great significance to the research work
in the field of computer vision.
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